

Neural Classification of Linguistic Coherence using Long Short-Term Memories

Pashutan Modaresi, Matthias Liebeck and Stefan Conrad

Hi! My name is Alan. I am a computer scientist!

Hi! I am a computer scientist! My name is Alan.

I am a computer scientist! Hi! My name is Alan.

Order of Sentences

Is what makes a text semantically meaningful

- → Hi!
- → My name is Alan.
- → I am a computer scientist!

n!

My name is Alan. Hi! I am a computer scientist!

I am a computer scientist! My name is Alan. Hi!

My name is Alan.
I am a computer scientist!
Hi!

Humans vs. Machines

Discourse Coherence

Linguistic Contradiction

Linguistic Redundancy

Pragmatics

Question

Is there a need to teach all these abilities to a machine?

Sentence Ordering

 $\Phi: \mathbb{R}^m \times \mathbb{R}^{m'} \to \mathbb{Z}$

Hi!

My name is Alan.

 $\left[egin{array}{c} x_1 \ x_2 \ dots \ x_m \end{array}
ight]$

 $\begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_{m'-1}' \end{bmatrix}$

Question?

What about the sizes of m and m'? Should they be equal?

Many Applications! Focus was

TEXT SUMMARIZATION

in the news domain

Treat the problem as a **classification** task

Number of Instances $\log p(z_n|x_1^{(n)};x_2^{(n)})$

Class probability of the n-th pair

Question

Why do we use the negative log-likelihood and not the log-likelihood?

Deep Neural Architecture

Deep Neural Architecture

Embedding: Simple matrix multiplication with input vector

Init the matrix E

__

Tip

Concatenate the embeddings

Deep Neural Architecture

Deep Neural Architecture

Tip

LSTM: Just a special kind of RNNs addressing their difficulties

Deep Neural Architecture

Dropout: Sets a random set of its arguments to zero.

Deep Neural Architecture

Tip

Dropout: Sets a random set of its arguments to zero.

Baseline - SVM

English German

Binary Ternary Binary Ternary

0.24 0.16 0.25 0.16

SVMs: Not really appropriate for sequential modelling

Macro-Averaged F1

	English		German	
	Binary	Ternary	Binary	Ternary
True	0.95	0.97	0.94	0.97
MC	_	0.98	_	0.97
False	0.95	0.98	0.94	0.98
Overall	0.95	0.98	0.94	0.97

Lessons Learned

- Use appropriate tools for sequence modeling
- RNNs are slow. First train on a subset of data
- Train deep models with lots of data points
- Find a way to automatically annotate data
- Use regularization (be generous)

Thank You For Your Attention